Technology Assessments: Hybrid, Battery Electric, and Fuel Cell Electric Vehicles November 19, 2015 **California Environmental Protection Agency** **Air Resources Board** # Multiple Near- and Long-Term Planning Efforts Underway - * Mobile Source Strategy framework supports multiple planning efforts - * SIP - Scoping Plan - * Sustainable Freight - * Hybrid, BEV, and FCEVTechnology Assessments - * 5 10 year outlook - * For medium- and heavy-duty vehicles (8,500 lbs.+) - * Provide technical foundation ## Clear Need for Diverse Portfolio of Technologies - * Portfolio of zero- and near-zero technologies - * Clean Combustion/Low-NOx - * Hybrids - * Fuel Cells - * Battery Electric - * Renewable fuels needed for deep GHG reductions - * Natural gas - * Diesel/gasoline - * Electricity - * Hydrogen # Technology Assessments Support On-going Planning Efforts - * Inform technical foundation for future regulatory efforts - Potential new regulatory efforts - * Development of renewable fuels - * Support infrastructure investments - * Demonstration and deployment of advanced technologies - * Investing in advanced technologies - Low carbon transportation - * Air Quality Improvement Program - * Alternative and Renewable Fuel and Vehicle Technology Program ### Technology Assessments Have Been Underway since Early 2014 **Early 2014** Technology assessments begun Dec. 2014 Board briefing status update April 2015 Overview report June 2015 Vehicle and Drivetrain Efficiency July 2015 • TRU and Commercial Harbor Craft Sept. 2015 Low NOx Diesel and Natural Gas Oct. 2015 Battery Electric Trucks and Buses Nov. 2015 • Cargo Handling, Hybrid, and Fuel Cell Electric Vehicle ### Key Findings Provide a Path to 2030 and Beyond - Near-term focus on clean combustion coupled with renewable fuel - * Maximizes NOx reductions needed for air quality attainment - * Use of renewable fuels ensure progress towards 2030 goals - * Zero emission vehicle deployments necessary - Continued technology commercialization - Additional localized risk reductions - Longer-term support for growing zero-emission technology - * Growing deployment of electric propulsion vehicles - Clean combustion still needed - * Growing need for renewable fuels ### Diesel and Natural Gas Assessments ## Lower NOx Achievable for Both Diesel and Natural Gas Engines #### * Diesel: - * Reducing emissions during cold start and low-temperature, low-speed city driving - * Maintaining high SCR efficiency at other times #### * Natural Gas: - * Systems approach combining advanced three-way catalysts with engine management strategies - * 8.9 liter engine recently certified as 90% cleaner #### * ARB-funded SwRI Low NOx Work * Target: 0.02 g/bhp-hr NOx for diesel and natural gas with minimal GHG impact ## Clean Combustion Important for Near- and Long-Term Reductions - * Low-NOx natural gas engines likely to be available sooner than for diesel - * Both are critical for attainment of air quality standards - * Well-to-wheel GHG emissions need to be addressed - * Higher than for fuel cell and battery electric - * Renewable fuels provide potential solution - * Available quantities could be limiting factor - * Complementary advanced technologies will needed # Advanced Clean Transit Concept: Near-Zero and Zero Emission Technologies - * Transit fleets an ideal early application of electric and fuel cell technology - * Mix of cleaner combustion & zero-emission buses - * Low NOx technologies - * Use of renewable fuels - * Phased-in adoption of zero-emission technologies - Natural fleet replacement rate (not accelerated) - * Increased engagement with stakeholders a priority - Establish transit workgroup - Conduct technology and regulatory workshops - * Evaluate economics and business case, funding and incentives - Update Board early 2016 ### Hybrid Vehicles ### What is a Hybrid Vehicle? #### Degree of hybridization: ### Hybrids Currently Best Suited for Urban Driving Cycles - High kinetic intensity: Heavy urban start-and-stop, aggressive acceleration/deceleration events, high idle time - Examples: Refuse haulers, transit buses, package/delivery trucks - Utilize electric power take-off (ePTO) - Examples: Utility and tree trimming services ### >2,500 Medium-/Heavy-duty Hybrids On Road in CA | Vehicle Type | Technology
Readiness | Number in Service in CA | |-------------------------------------|-------------------------|--| | Parcel Delivery | | 830 | | Uniform & Linen Delivery | Commercially available | 110 | | Beverage Delivery | | 440 | | Food Distribution & Other Trucks | | 680 | | Buses (Transit,
Shuttle, School) | | 470 | | Other | | Demos: Utility/Bucket
Trucks, Drayage | Many more in use overseas, most in China, South America, Europe, India # Expanding Hybrids into Additional Applications - Class 3-8 rural/intracity and regional delivery, and drayage - * Plug-in hybrids for utility/bucket truck applications, with increased use of ePTO, plug-in drayage - * Line haul trucks may adopt mild hybridization as efficiency standards tighten ### Overcoming Market Challenges - * Cost: ~20% to 50% of vehicle purchase cost - Costs relatively high at low volume - Solutions: O&M savings, incentives, increasing volumes - * Performance: High-power demand applications - Solutions: Battery improvements, system optimization - * Weight: Weight penalty of 300 lbs.-4,500 lbs. - Solutions: Light weighting, route selection - Certification: OBD and NOx emissions challenges - Solutions: Innovative Technologies Regulation, improve engineering designs and system integration #### Hybrid Technologies Can provide Overall Cost Savings to Fleets "F" = Fuel savings, "M" = Maintenance Savings "I" = Incentives ^{*} NREL "Coca-Cola Refreshments Class 8 Diesel Electric Hybrid Tractor Evaluation: 13-Month Final Report" - NREL/TP-5400-53502 August 2012- K. Walkowicz, M. Lammert, and P. Curran ## Battery-Electric Vehicles (BEVs) #### What is a Battery-Electric Vehicle? - * A vehicle using batteries as the sole source of power - * Components: - Electric motor - Battery pack and battery management system # Optimal BEV Duty Cycle is Similar to Hybrid's - * Urban or suburban routes - Frequent start and stop - High idle times/lower average speeds - Daily ranges of 100 miles or less - * This makes them particular suitable in early years for: - Transit buses - Shuttle buses - Delivery trucks ### Hundreds of Medium-/Heavy-Duty BEVs in California | Vehicle Type | Technology
Readiness | Number in Service | |-------------------------------------|---------------------------|--| | Transit Bus | Commercially
Available | ~40 in California,
>2,500 worldwide | | School Bus | Limited Commercial | 4 in California | | Medium-Duty | Limited Commercial | 300+ | | Heavy-Duty (> 14,000
lbs. GVWR) | Demonstration | 2 Drayage1 Refuse | ### Overcoming Market Challenges #### * Range - Solutions: Battery improvements, fast-charge technology - * Incremental cost (Bus: ~ 50% of purchase cost) - Solutions: O&M savings, incentives, increasing volumes - * Weight - Solutions: Battery improvements, light weighting - * Charging/infrastructure - Solution: Incentives #### Battery Electric Transit Bus Cost vs. Time # Fuel Cell Electric Vehicles (FCEVs) #### What is a FCEV? - * Fuel cell system generates electricity to propel the vehicle and operate auxiliary equipment - * Components: Fuel cell stack, drivetrain, energy storage system, hydrogen storage system, cooling systems, and DC/DC converter(s) ### Dozens of Medium-/Heavy-Duty FCEVs On Road | Vehicle Type | Technology
Readiness | Active/Planned Demonstrations | |-------------------|-------------------------|-------------------------------| | Transit Bus | Limited Commercial | 23 active/22 planned | | Shuttle Bus | Demonstration | 2 active/8 planned | | Delivery Vehicles | Demonstration | 38 active/planned | | Drayage Trucks | Demonstration | 12 active/planned | #### Overcoming Market Challenges - * Fuel Cells solve the battery range issue and have good reliability but: - Training maintenance staff - Solution: training program improvements - Currently slightly lower availability than diesel - Solutions: parts availability, training programs - Incremental cost still high: >100% of purchase cost - Solutions: increasing volumes, learning curve - Fueling infrastructure - Solutions: incentives, demand ## Supporting Fueling Infrastructure Must be a Priority - Extensive work done to plan lightduty hydrogen fueling infrastructure - * Data gathering from manufacturers - * ARB analytical tools project station gaps - * \$20 million annually in CEC funding - * Network of 51 stations expected by 2016 - Medium-/heavy-duty fueling at different pressure - Need similar effort for medium-/heavy-duty fueling # Clean Advanced Technologies Are Key to Meeting Future Goals ### Advanced Technologies Will Provide Critical Emission Benefits #### * Hybrids: - Potential NOx benefits - Modest GHG benefits #### * BEVs: - Zero tailpipe emissions - Well-to-wheel and lifecycle GHG emission benefits #### * FCEVs: - Zero tailpipe emissions - Well-to-wheel and lifecycle GHG emission benefits # Payback Periods Improving with Decreasing Incremental Costs - * Hybrids: - Reduced O&M costs - Payback period varies from 3 to 18 years - * BEVs: - Reduced O&M - Payback in 4+ years - * FCEVs: - Payback assessment still under development ### Comprehensive Strategies to Expand Use of Advanced Technologies - * Planning efforts highlight need for diverse technology portfolio - * Clean combustion - * Zero-emission - * Renewable fuels - Public investments are supporting technology development - * Incentives are prioritizing both clean combustion and zeroemission - Multiple applications targeted - Regulatory development underway ### Measures Under Development to Encourage Advanced Technologies - * Innovative Technologies 2016 - * Advanced Clean Transit 2016 - * Heavy-Duty GHG Phase 2 2016-2017 - * Last Mile Delivery 2017 - * Zero Emission Airport Shuttle Buses 2017-2018 #### Moving Forward - * Staff will continue to work with stakeholders on ARB planning and measure development - Near- and long-term scenarios - * Both clean combustion and zero-emission - Technology assessments posted as drafts - * Accepting comments - * Will support ARB planning and regulatory efforts - * Advanced technology trucks are here - * Commercially available and/or in demonstration - * Challenges exist, but so do solutions